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Closed-Form Expressions for the Current or
Charge Distribution on Parallel

Strips or Microstrip

EDWAIUI F. K?JESTER, MENfrtER, IEEE, AND DAVID C. CHAF?G, S13NfORMEMBER, IEEE

Abstti-S*le butaeeurato cksed-form expressions for * charge

and cument tihtiom on paralkl-pkte striplfne or micros@ are given,

m fom 1sWnvetient for We in Wrfous applklltionss such aa *--
@ *don 0s mQde fields of tk? he% m- kqueney Clispedon 04 the
fubnti * cd * mkmslrip. These expremiom are used to obtsh
expmt exp-iom for the eslpmitamx of these m aemrato m Wkhin
one pmnt d the aettod Vake for any ratio of atripwidth to X*.

1. IrrrRo~ucmoN

THESTATIC capacitance per unit length of two in-

finite parallel perfectly conducting strips (see Fig. 1)

of widti M and separated by a distance 2t has an exact

solution via the method of conformd transfmmation

which I-Ms been extensively studied in the literature [1]–[7].

As with many conforrnal mapping results, however,

neither the fields nor the capacitance are obtained ex-

plicitly, but require solution of one or more implicit equa-

tions involving incomplete elliptic integals. The authors

recently were in need of a reasonably simple, approximate

but explicit expression for the charge distribution on one

of’ the strips in an investigation of dispersion on wide

micmstrip [8]. Although a number of approximations

(some of them only implicitly defined) for the capacitance

can be found in the literature [1], [2], [9]–[ 15], only [15]

gives an explicit approximation fo~ the charge distribu-

tion, and it is rather cumbersome, requiring the reading of

a number of constants from a graph.
It is km.mvn (see, e.g., [16]) that a ymmetric striplim+--a

strip of width 21 located midway between and parallel to

two infinite conducting planes which are separated by a

&stance 2&—has an exact solution for charge (or current)

distribution of the form

#osh2(#)-cosh2(~)

Depending on the ratio l/h and the constant PO, this

function can represent a variety of behaviors, but always

satisfies the edge condition as y+. & 1. The authors thus

tried various values of h in an attempt to approximate the

charge distribution on a parallel-plate stripline, and found
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Fig. 1. Parallel-plate transmission fine.

(quite by accident) that the value h= 2t provided a very

good fit for both narrow and wide strips. since (1) is so

simple, and may be useful in other applications such as

calculating radiation and mode field distributions, it

seemed worthwhile to attempt to give a more rigorous

justification for it. This is done in the present paper, and

is generalized to the case of a microstrip with a substrate

pertittivity different from free space. As an application

of these results, explicit expressions for the static capaci-

tance per unit length of these transmission lines are ob-

tained, which are accurate to less than one percent for all

values of l/t and q.. Although in some cases this repre-

sents only a modest improvement over the results of

Wheeler [11], [20], the expressions for the capacitance are

intended primarily as an illustration of the application of

the closed-form expressions for charge distribution, which

are the main result of the paper and are believed to be

new.

11. APPROXIMATE KERNEL AND CHARGE

DISTRIBUTION FOR PARALLEL PLATES

If the plates of Fig. 1 are kept at a potential difference

V, standard Green’s function techniques convert the field

equations to an integral equation for p(y) on one of the

strips:

The capacitance CP (normalized to the pennittivity of the

surrounding medium) is then given by

q= +J-:(4MY. (3)

We seek to extract from the kernel of (2) a dominant

singular part which is solvable in closed form, but which
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also behaves appropriately in both the wide and narrow

strip limits.

The narrow strip limit is satisfied by any function which

reduces to –ln[y –y’l plus some constant as [y –y’/~O.

[
Taking – in tanh

m[y –y’l 1as a model (the solution of

(2) with this kernel is’%mply (l); this is the kernel for the

previously mentioned symmetric strip line), and using the

fact that for wide strips p(y) will be nearly constant over

most of the strip, we choose h so that

(4)

and thus (2) will be approximately satisfied for wide strips

as well. Equation (4) is easily evaluated and shows that

h= 2t, confirming our empirical observation. The choice

of an approximate kernel by matching the singularities

and the areas is similar to an idea of Koiter [27] and

Carrier [28], who use the method for Wiener–Hopf-type

problems and provide explicit error criteria,

The difference AG between our exact and approximate

kernels is nonsingular:

Jfj7jw
IY-Y’I

=G(y ‘y’)= Go(y –y’) +LiG(y ‘y’)

(5)

where

[

Trly-y’l
GO(y–y’)= –ln tanh St 1

and

[

tadrrly-y’l

AG(y ‘y’) =ln ~~

}
IY-;; “

A plot of G, GO, and AG as a function of Iy –y’l/t is

shown in Fig. 2, demonstrating the fit that has been

achieved.

With h = 2t in (l), we obtain our approximate expres-

sion for p(y)—except for the constant PO which will be

proportional to the voltage ~ and the capacitance CP. We

determine this constant by integrating (1) from – 1 to 1

and requiring that the result (the total charge) be CPV. We

obtain

P(Y) =
8;~)[c0sh2(~)-’0sh2(;)] -”2 (q

where K(k) is the complete elliptic integral of the first

kind,

()
k=tanh ~ ; k’= (1 – k2)1f2. (7)

Expression (6) was compared with the exact charge dis-

tribution as computed from the implicit relations in, e.g.,
[3].1 The worst agreement was found for i/t between

*Caution must be observed that the Jacobian zeta function, which
appears in this mapping is accurately evaluated, especially for wide strips
which correspond to modulus close to unity. For this comparison the
algorithm of [17] was used.
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Fig. 2. Comparison of exact and approximate kernels (cf. (5)).
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Fig. 3. Comparison of exact and approximate(11) charge distributions
for paraflel strips.

about 1.5 and 3; a comparison for 1/t= 2.37 is given in

Fig. 3. The largest discrepancy is in the relatively small

region near the edge of the strip; even here, it is only

about 12 percent for y / 1= 0.99. The overall fit, however,

is seen to be quite good. For 1/ ts 1 or 24, the error was

found to be a few percent or less.

III. AN APPLICATION: CLOSED-FORM EXPRESSION

FOR CP

As in [18] and [16], we may construct a variational

expression for the capacitance by multiplying (2) by p(y)

(now a trial function) and integrating from – 1 to 1. Using

(3) and (5) we obtain

1
—= ~+~
Cp c,

(8)

where

[
----2 J’JkY)P(YYn tdmly;y’l]@@’

–I –I
—.—
c,

d (’P(Y)4Y12

(9)

L. J_/ J
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and

, f’ ~fP(Y)P(Y’)A~(Y-Y’)4@’–t –1

E=
[f

. (10)
?7 jw-qz

If (6) is chosen for the trial function, then the term C, in

(8) can be identified as the capacitance per unit length of

the aforementioned symmetric stripline; it can be

evaluated exactly in terms of complete elliptic integrals of

known modulus [Id]:

c.== 4K(k]/K(k’) (11)

where k and k’ are defined in (7). Although the correction

temn 1/AC in (10) can apparently not be evaluated in

closed form, we can be somewhat more careless with it

since it is expected to be a small correction term. Thus we

argue that for -purposes of evaluating AC, P(y) can simply

be taken as a constant, because if l/t< 1, AG is nearly

constant and the numerator of (10) approximately decou-

ples into

AG(0)[~::(y)@]2

so that from (10), 1/L%C~AG@)/v, which is vex-y insensi-

tive to what P(y) really is. On the other hand, for wider

strips, a constant distribution is closer to the actual dis-

tribution. Furthermore, AG itself is quite a well-behaved

function, and can be excellently approximated (within a

few percent over O< y < m) by

AG(y)E4 (Y/02- f2 ;

[(Y/~)2+a]2 a= In(:/T) ‘$2794. (12)

This function matches AG exactly at y = O and asymptoti-

cally as ye m, and integrates to zero from y = – co to

-t- m as required of the exact A G. With these simplifica-

tions, the correction term is quite simple to calculate, and

is found to be

(13)

Equations (8), (11), and (13) combine to give an explicit

approximation to CP:

Computations based on (14) have been compared to exact

results from the conformal mapping solution, and the

largest error was again found in the region 1/t between

about 1.5 and 3.0. The largest error in CP was found to be

about 0.75 percent. This far exceeds the accuracy of most

of the previously available closed-form approximations

[1], [2], [9]-[11] and avoids the necessity of solving a

transcendental equation as do the implicit approximations

of [ 11]–[ 15]. The small price that is paid is the presence of

elliptic integrals, but these are well tabulated and can be

computed rapidly, even on small programmable cakmla-

tors, using the atitbmetic-geomettic mean algotithm [19].

Wheeler [20] has recently given an analytical-empitical

formula whose maximum error is a shade over 1 percent

which involves only elementary functions, and which is

probably preferable to (14) in most applications in view of

the slight additional accuracy the latter provides. On the

other hand, the derivation of (14) is less empirical and

illustrates the use of the approximate charge distribution

(6) and the approximate equivalence with a symmetric

strigdine.

IV. &PRO-~E C~ARG~ D1STIWNJTION m

CAPACWANCX WR MICXWSTIUP

We can follow a similar line of argument for the static

limit of the open microstrip illustrated in Fig. 4. Once

again, by standard techniques (see, e.g., [16] or [18]), we

find that the integral equation for the charge distribution

on the strip (which is at a potential V with respect to the
ground plane) is

where the kernel G~O)(y) can be expressed as a Fourier

integral:

~ is the relative permittivity of the substrate and t its

thickness. The capacitance Cm of this micxostrip, normal-

ized to co is now

FJow, the kernel for the symetrk stripline has a

known Fourier integral representation [21, #4. 116.2]:

We wish to find some multiple of this function which

matches the singular behavior of G~O)(y) as y +0, and

which when integrated over – m <y< m yields the same

value as well. Elementary considerations from Fourier

transform theory tell us that the first condition can be.

satisfied by adjusting the behavior of the integrand of (18)

to match that of (16) for large A, while the second is

satisfied by matching the integrands at A = O. From these

two constraints we arrive at the approximate kernel

The separation height h of the equivalent symetric s&ip-

line is (c, + l)t/cr.We thus observe that the charge distrib-

ution for this microstrip should be approximately that
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Fig. 4. Open microstrip.

corresponding to (19):

Po
P(Y) = 9

#osh2(2(:’,,,)-cosh2( 2(rl)t)

lyl<L (20)

Since the total charge must be Cm V, we find, by an

integration like that which led to (6), that

7rcr cmv
‘0= 4(cr + l)tk:K(kJ

where

(21)

Note that (20)-(21) reduce to (6) when %-+1, as expected,

while for q>> 1, the charge distribution is nearly identical

to that of a symmetric stripline with h = t. This approxi-

mate equivalence between different forms of stripline for
largeC,was apparently first noticed by Dukes [22], who

argued that since most of the electric flux is concentrated

in the substrate, the upper ground plane has only a small

effect. Wheeler [23] used this limiting case as a partial

basis for his original approximate conformal mapping

solution for the static capacitance of the open microstrip.

By comparison of (20) with (6)—which would represent

an approximation for the static current distribution for a

microstrip with nonmagnetic substrate—it is seen that the

charge distribution is somewhat “flatter,” i.e., the charge

decays faster away from the singularities at the edges of

the strip than does the current. The effect is more pro-

nounced the wider the strip, and is illustrated in Fig. 5 for

a microstrip of 1/t= 3 and ~ = 10. The effect of this

difference in distributions is that a tran.roerse current will

be required on the strip for nonzero frequencies because

of charge consewation. This current has been found to be

an important contributor to the dispersion in wide micro-

strip [8].

By applying the variational method of Section III, we

may come up with a closed-form approximation for Cm as

well. As before, the part involving G~~J gives rise to

complete elliptic integrals, while a small correction term

remains:

1 1 K(k;)
—.
cm 2(c,+ 1) K(kc)

j’ f’fW(Y-Y’MY’)P(Y)4Y4Y’
+ -1 –[

qJj(Y)@~

. (23)

5

t

— CHARGE
--- CURRENT

Fig. 5. Charge snd current distributions on open microstrip q= lo
l/t=3.

Here kC and k: are defined by (22),

AGe(y) -G~O)(y) – G%)(y)

r

while

().Cos A: . (24)

We can again use rougher approximations to evaluate the

correction terms, taking p(y) as a constant, and approxi-

mating AGe over OG y < co by

AG (y)~~ (y/t)2–aa .e
f: [(y/t)’+ac]2 ‘

(q+l)/+
aC=—

[1
(25)

Q(- dc)+ln ‘c’
2(%+ 1)

where ~.= (q – 1)/(6, + 1), and the function

(26)

which has previously appeared in analyses of narrow

microstrip [24] has been introduced. As with (12), the

expression in (25) has been chosen to match AG= exactly

at y = O and asymptotically as y~co, and to integrate to

zero from y = – eo to + m, as is required of the exact

expression (24). The correction term is now easily calcu-

lated, and found to be

[1-—in 1+~ .
t2

4c:7d2 a<t2
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Thus vve obtain an explicit approximation to Cm parallel-plate transmission line, evaluating the radiation

K(lq) fz [1
from microstrip discontinuities, or computation of the

1 1

<“
-—lnl+&.

2(6, i-1) K(kc) 4m:12
(27) Performance of striP1~e antennas. In this paper, they have

a. t2 been used to obtain extremely accurate closed-form ex-

(Note that for q= 1, Cm =2CP, as found from (14), as we
pressions for the capacitance of parallel-plate and micro-

expect.) As 1/ t~O, this expression reduces to the one
strip transmission lines, with an accuracy of a fraction of

quoted in [24] for narrow strips; in the opposite limit, we
one percent. The primary usefulness of (6) and (20),

find
however, should be in applications where numerous

evaluations of charge and current density need to be

C~~c,$ -f-(c, + l)31n2 (2g) made (e.g., when these distributions appear inside an
T integral), and considerable computer time is to be saved

which gives the correct parallel-plate value plus a smaller by using these instead of numerically obtained values.

fringing term.

Testing the accuracy of (27) is somewhat more difficult

became no strictly “exact” solution exists, and compari-

son must be made with numerical solutions of high ac-

curacy. Moreover, since two parameters (1/ t and e,) are

now involved, checking accuracy over all ranges is more

tedious. For the cases we tested, using ~e 10, the relative

error was smaller than that for the same value of 1/t but

with q= 1. In fact, the accuracy of (27) and (20) will

increase with s,, because A Ge falls off essentially as e,– 2,

while G:*) itself does so only as 1/c,. Thus the errors in (6)
and (14) discussed in Section 111 will be upper bounds for

those Of (20) and (27) if ~, >1.

We should emphasize that the current and charge dis-

tributions (6) and (20) are the principal results of this

paper, and that (14) and (27) are intended as illustrative

applications of these results (another application is found

in [8]). The presence of the function Q( – tit) probably

precludes the use of small programmable calculators to

evaluate (27) at present, and Wheeler’s [20] analytical-

empirical formula (whose accuracy he estimates at 2 per-

cent) should be adequate for such purposes. In addition,

wheeler’s formula is reversible and can be used either for

analysis or for synthesis. However, (27) is easily pro-

grammed on most ordinary computers and provides at

least twice the accuracy of Wheeler’s formula (if this is

required) without the use of more time-consuming

numerical procedures.

We might note in closing that the only other closed-

form variational results for Cm of which we are aware are

those of Vaynshteyn and Fialkovskii [25], [26]. These

authors, however, obtain accuracy comparable to that of

(27) only by using a function defined by a doubly infinite
summation which can be quite tedious to evaluate numeri-

cally.

V. CONCXuslON

It has been shown that charge and current distributions

on parallel-plate and rnicrostrip transmission lines are

approximated quite well by expressions (6) and (20) over

the entire range of values of 1/t and Cr. Because of their

simplicity, these functions should be useful in many ap-

plications where an accurate knowledge of these distribu-

tions is required. In addition to dispersion calculations [8],

these might also include computing the mode fields of a
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Theory of Dispersion in Microstrip
of Arbitrary Width

EDWARD F. KUESTER, h@MBE~ IEEE AND DAVID C. CHANG, SEMOR MEMEER, lEEE

A/mmet-Ao lUMfytiCtheory for the di!iperdon Of the fmldalnelltai

medemswide apenmicraa@ iaprwented. Osdyadngle badsfmsctionis
needed to accurately represent each of the dsange and current dktrfbu-

tiom on the strip, thus aflowing more effident determination of the

pmpagath conataot as compared to mmnent-methnd solutions rs+ring a
larger number of basis functions. llse reasdta obtdned blend smoothly into

results of higfs-frqueney (Wiener-Hopf) themta% and SW retdn tbe
appealing phydcaf interpretation in terms of cqsitance and fndwtaoce of

thenarraw etliptheory previaudy obtdnedbytbe authorR

I. INTRODUCTION

I n PREVIOUS work, the authors [1] have presented an

analytic theory of dispersion for narrow open rnicro-

strip (that is, for which the strip is small compared to

substrate thickness) in terms of a dispersive series induc-

tance and capitance, generalizing the classical expression

for the propagation constant from transmission line the-

ory which involves the static values of these parameters.

Because an accurate form for the current and charge

distributions (which are the same for this case) was availa-

ble, it was possible to avoid more cumbersome moment

function expansions, and to obtain a relatively simple

dispersion relation possessing the clear physical interpre-

Manuscript received June 11, 1979; revised Octolxm 17, 1979. This
pmjeet is supported in part by the Office of Nwcf Research under
Contract NO014-76-C-0318 and in part by NSF Grant ENG78-09029.

The authors are with Electromagnetic Laboratory, Department of
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tation referred to above. In reviewing numerical results

available in the literature for wider microstrip, whose strip

width is comparable to substrate thickness, the authors

found significant discrepancies between workers who used

different methods to attack the problem [2]. The best

methods seem to be those which can represent the current

and charge distributions (especially the edge singularities)

accurately with a minimum number of basis functions.

The goal of the present study is to formulate an analytic

theory of dispersion similar to [1] which will be valid for

wider strips, yet still retain both analytical and computa-

tional straightforwardnes8 as well as clear physical insight

into the problem. Crucial to this is the recognition that the

charge and current distributions now differ significantly

from those in the narrow-strip limit, and also differ to

some extent from each other. Thus an important part of

the discussion depends on having accurate and reasonably

simple functional descriptions of these distributions. The

results will be examined to see what degree the difference

of these distributions from the narrow-strip case and from

each other affects the accuracy of the computed disper-

sion curves.

Of published numerical work, references [3]–[5] offer

results that we might classify as applying to “wide” micro-

strip, and these will be used as the basis for comparison.

Also, although we shall consider strips wide compared to

the substrate, the strips are not allowed to become electri-
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