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Closed-Form Expressions for the Current or
Charge Distribution on Parallel
Strips or Microstrip
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Abstract—Simgple but accurate closed-form expressions for the charge
and current distributions on parafiel-plate stripline or microstrip are given.
This form s convenient for use in various applications, such as determin-
ing radiation or mode fields of the lines, or freguency dispersion of the
fundamentai mode of the microstrip. These expressions are used to obtain
explicit expressions for the capacitance of these lines, accurate to withip
one percent of ihe actual value for any ratio of stripwidth to spacing,

I. INTRODUCTION

HE STATIC capacitance per unit length of two in-

finite parallel perfectly conducting strips (see Fig. 1)
of width 2/ and separated by a distance 2¢ has an exact
solution via ihe method of conformal transformation
which has been extensively studied in the literature [1]j-{7].
As with many conformal mapping results, however,
neither the fields nor the capacitance are obtained ex-
plicitly, but require solution of one or more implicit equa-
tions involving incomplete elliptic integrals. The authors
recently were in need of a reasonably simple, approximaie
but explicit expression for the charge distribution on one
of the strips in an investigation of dispersion on wide
microstrip [8]. Although a number of approximations
(some of them only implicitly defined) for the capacitance
can be found in the literature [1], [2], [9]-[15], only [15]
gives an explicit approximation for the charge distribu-
tion, and it is rather cumbersome, requiring the reading of
a number of constants from a graph.

It is known (see, e.g., [16]) that a symmerric stripline—a
strip of width 2/ located midway between and parallel to
two infinite conducting planes which are separated by a
distance 2h—has an exact solution for charge (or current)
distribution of the form

o(y)= Lo :

4 y
{313
V/cos (2 A cosh™{ 5=
Depending on the ratio //4 and the constant p,, this
function can represent a variety of behaviors, but always
satisfies the edge condition as y— £ /. The authors thus

tried various values of 4 in an attempt to approximate the
charge distribution on a parallel-plate stripline, and found

i<t (1)
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Fig. 1. Parallel-plate transmission line.

(quite by accident) that the value h=2¢ provided a very
good fit for both narrow and wide strips. Since (1) is so
simple, and may be useful in other applications such as
calculating radiation and mode field distributions, it
seemed worthwhile to attempt to give a more rigorous
justification for it. This is done in the present paper, and
is generalized to the case of a microstrip with a substrate
permittivity different from free space. As an application
of these results, explicit expressions for the static capaci-
tance per unit length of these transmission lines are ob-
tained, which are accurate to less than one percent for all
values of //¢ and €. Although in some cases this repre-
sents only a modest improvement over the results of
Wheeler [11], [20], the expressions for the capacitance are
intended primarily as an illustration of the application of
the closed-form expressions for charge distribution, which
are the main result of the paper and are believed to be
new.

II. APPROXIMATE KERNEL AND CHARGE
DISTRIBUTION FOR PARALLEL PLATES

If the plates of Fig. 1 are kept at a potential difference
V, standard Green’s function techniques convert the field
equations to an integral equation for p(y) on one of the

strips:
Ly N (C ) i TV AS
mJ_y ly =y
The capacitance C, (normalized to the permittivity of the
surrounding medium) is then given by

v f o). ©)

We seek to extract from the kernel of (2) a dominant
singular part which is solvable in closed form, but which
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also behaves appropriately in both the wide and narrow
strip limits,

The narrow strip limit is satisfied by any function which
reduces to —In|y —y’| plus some constant as |y —y’|—0.
Taking —In tanh”');—;y'
(2) with this kernel is simply (1); this is the kernel for the
previously mentioned symmetric strip line), and using the
fact that for wide strips p(y) will be nearly constant over
most of the strip, we choose 4 so that

- f:oln{tanhﬂ%)—ﬂ :Iaj)’= f—imm‘b/

ly =y
@

and thus (2) will be approximately satisfied for wide strips
as well. Equation (4) is easily evaluated and shows that
h=2t, confirming our empirical observation. The choice
of an approximate kernel by matching the singularities
and the areas is similar to an idea of Koiter [27] and
Carrier [28], who use the method for Wiener—Hopf-type
problems and provide explicit error criteria.

The difference AG between our exact and approximate
kernels is nonsingular:

N2
w2 Gy Gy +aG(-)

as a model (the solution of

|y =]
(5)
where
Go(y—»)= ~1n[tanhﬂ—)%:—y—| ]
and
tanh 2=l
AG(y—y)=In{\(y —y P +42 —BL__|
ly =y

A plot of G, Gy, and AG as a function of |y—y’|/¢ is
shown in Fig. 2, demonstrating the fit that has been
achieved.

With A=2¢ in (1), we obtain our approximate expres-
sion for p(y)—except for the constant p, which will be
proportional to the voltage V" and the capacitance C,. We
determine this constant by integrating (1) from —/ to /
and requiring that the result (the total charge) be C, V. We
obtain

p(y)= gl%—,c—;-;%;)- [coshz( —:—g ) - coshz( %) ] o (6)

where K(k) is the complete elliptic integral of the first
kind,

k=tanh(ll); K =(1—k¥'"2

41 @
Expression (6) was compared with the exact charge dis-
tribution as computed from the implicit relations in, e.g.,
[3).! The worst agreement was found for //¢ between

!Caution must be observed that the Jacobian zeta function, which
appears in this mapping is accurately evaluated, especially for wide strips
which correspond to modulus close to unity. For this comparison, the
algorithm of [17] was used.
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Fig. 2. Comparison of exact and approximate kernels (cf. (5)).
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Fig. 3. Comparison of exact and approximate (i1) charge distributions
for parallel strips.

about 1.5 and 3; a comparison for //¢=2.37 is given in
Fig. 3. The largest discrepancy is in the relatively small
region near the edge of the strip; even here, it is only
about 12 percent for y//=0.99. The overall fit, however,
is seen to be quite good. For //¢51 or =4, the error was
found to be a few percent or less.

III. AN APPLICATION: CLOSED-FORM EXPRESSION
FOR C,

As in [18] and [16], we may construct a variational
expression for the capacitance by multiplying (2) by p(»)
(now a trial function) and integrating from —/ to /. Using
(3) and (5) we obtain
1

| v

1
G ~c¢Tae (8)
where o B
2 f_lf_lp(y)p(y’)ln[tanhzfl_)’%]dydy,
o €)]

ol s)a]
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and

1 f_ll f_llp(y)p(y’)AG( y—y)dydy’

AC

(10)
[ o]

If (6) is chosen for the trial function, then the term C, in
(8) can be identified as the capacitance per unit length of
the aforementioned symmetric stripline; it can be
evaluated exactly in terms of complete elliptic integrals of
known modulus [16]:

C,=4K(k)/K(k") (11)

where & and k' are defined in (7). Although the correction
term 1/AC in (10) can apparently not be evaluated in
closed form, we can be somewhat more careless with it
since it is expected to be a small correction term. Thus we
argue that for purposes of evaluating AC, p(y) can simply
be taken as a constant, because if //r<1, AG is nearly
constant and the numerator of (10) approximately decou-
ples into

260 [’ )|

so that from (10}, 1 /AC~AG(0)/ =, which is very insensi-
tive to what p(y) really is. On the other hand, for wider
strips, a constant distribution is closer to the actual dis-
tribution. Furthermore, AG itself is quite a well-behaved
function, and can be excellently approximated (within a
few percent over 0 <y < o0) by

AG(y)z2———-—————(y/t)2— a_.
[(v/8)+a]"

This function matches AG exactly at y =0 and asymptoti-

cally as y—o0, and integrates to zero from y=—oc0 to

+ 00 as required of the exact AG. With these simplifica-
tions, the correction term is quite simple to calculate, and
1 2

is found to be
472
——In| 1+ —|.
2mi? [ at? ]

Equations (8), (11), and (13) combine to give an explicit
approximation to Cy:

2

[ROC . Y

ACT (13)

al
1 K(sech:‘—t) 2 47
== TN njl+— | (14)
P 2K(tanh—‘i—t-) kb at

Computations based on (14) have been compared to exact
results from the conformal mapping solution, and the
largest error was again found in the region //¢ between
about 1.5 and 3.0. The largest error in C, was found to be
about 0.75 percent. This far exceeds the accuracy of most
of the previously available closed-form approximations
[1}, [2], [9]-[11] and avoids the necessity of solving a
transcendental equation as do the implicit approximations
of [11]-[15]. The small price that is paid is the presence of
elliptic integrals, but these are well tabulated and can be
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computed rapidly, even on small programmable calcula-
tors, using the arithmetic-geometric mean algorithm [19].
Wheeler [20] has recently given an analytical-empirical
formula whose maximum error is a shade over 1 percent
which involves only elementary functions, and which is
probably preferable to (14) in most applications in view of
the slight additional accuracy the latter provides, On the
other hand, the derivation of (14) is less empirical and
illustrates the use of the approximate charge distribution
(6) and the approximate equivalence with a symmetric
stripline.

IV. AprPROXIMATE CHARGE DISTRIBUTION AND
CAPACITANCE FOR MICROSTRIP

We can follow a similar line of argument for the static
limit of the open microstrip illustrated in Fig. 4. Once
again, by standard techniques (see, e.g., [16] or [18]), we
find that the integral equation for the charge distribution
on the strip (which is at a potential ¥ with respect to the
ground plane) is

32 ) pONCO-d=v a3

where the kernel G(y) can be expressed as a Fourier
integral:

A2

tanh A ( :

© D
GO0 = )f) € +tanhA >

¢, is the relative permittivity of the substrate and ¢ its
thickness. The capacitance C,, of this microstrip, normal-
ized to €; is now

Cn= ﬁ,l; f_ Ilp(y)dbf- 17

Now, the kernel for the symmetric stripline has a
known Fourier integral representation [21, #4.116.2]:

A

We wish to find some multiple of this function which
matches the singular behavior of G(y) as y—0, and
which when integrated over — co <y < o0 yields the same
value as well. Elementary considerations from Fourier
transform theory tell us that the first condition can be
satisfied by adjusting the behavior of the integrand of (18)
to match that of (16) for large A, while the second is
satisfied by matching the integrands at A=0. From these
two constraints we arrive at the approximate kernel

e+1
tanh( }\)

7|y| ootanh(}‘é) Y
—ln[tanh—iz—]ffo =———-—-—-cos(z\7)d}\. (18)

2 had €, y
O( )= o4
Ce'() e,+1f0 A COS(}‘t)d}‘
_ 7e, |y
= €’+lln tanh Aot 1)t | (19)

The separation height A of the equivalent symmetric strip-
line is (¢, + 1}2/€,. We thus observe that the charge distrib-
ution for this microstrip should be approximately that
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Fig. 4. Open microstrip.

corresponding to (19):

p(y)= fo ,

2 we, | _ N _'rLe_,_y_)
\/°°Sh (2<e,+ 1),) cosh (2(e,+ 1)

lyl<i.

(20)

Since the total charge must be C,V, we find, by an
integration like that which led to (6), that

_ 7€, C,, V 21
Po™ 4(e + D1k K(k,) @1
where
TE, l 1/2
= — e} ! - — 12
k, tanh( 2(9'”)’)’ k! (1 ke) R (22)

Note that (20)-(21) reduce to (6) when ¢,—>1, as expected,
while for €.>>1, the charge distribution is nearly identical
to that of a symmetric stripline with A=¢. This approxi-
mate equivalence between different forms of stripline for
large ¢, was apparently first noticed by Dukes [22], who
argued that since most of the electric flux is concentrated
in the substrate, the upper ground plane has only a small
effect. Wheeler [23] used this limiting case as a partial
basis for his original approximate conformal mapping
solution for the static capacitance of the open microstrip.

By comparison of (20) with (6)—which would represent
an approximation for the static current distribution for a
microstrip with nonmagnetic substrate—it is seen that the
charge distribution is somewhat “flatter,” i.e., the charge
decays faster away from the singularities at the edges of
the strip than does the current. The effect is more pro-
nounced the wider the strip, and is illustrated in Fig. 5 for
a microstrip of //t=3 and ¢, =10. The effect of this
difference in distributions is that a transverse current will
be required on the strip for nonzero frequencies because
of charge conservation. This current has been found to be
an important contributor to the dispersion in wide micro-
strip [8].

By applying the variational method of Section III, we
may come up with a closed-form approximation for C,, as
well. As before, the part involving G gives rise to
complete elliptic integrals, while a small correction term
remains:

1 K(k)
2e.+1) K(k)

[ [ 8600 =000 (0) 0 b
2a] [ o]

1
o

(23)
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Fig. 5. Charge and current distributions on open microsttip ¢, =10;
Ift=3,

Here k, and k] are defined by (22), while
AG,(»)=GP(») - GR(») "
tanh( & 7\)
€

®© dA
—2.[0 N e+1

-cos()\}—;).

We can again use rougher approximations to evaluate the
correction terms, taking p(y) as a constant, and approxi-
mating AG, over 0< y < oo by

tanhA
€ +tanhA

(24

2 _(/)-a_ .
P /4]
(¢+1)/&
Q(—8¢)+1n[

AG,(y)=

"

(25)

a=—

]

where 8, =(¢,—1)/(¢,+ 1), and the function

o= ¥ xmin(2E1)

m=1

(26)

which has previously appeared in analyses of narrow

microstrip [24] has been introduced. As with (12), the

expression in (25) has been chosen to match AG, exactly

at y =0 and asymptotically as y—o0, and to integrate to

zero from y= —o0 to -+ o0, as is required of the exact

expression (24). The correction term is now easily calcu-
lated, and found to be

2 2

! In{ 1+ al .

4¢’nl? at?
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Thus we obtain an explicit approximation to C,

’ 2 2
LKWk 1+20 0 o
2(e,+1) K(k,) 4ne?l? at?

(Note that for ¢, =1, C,,=2C,, as found from (14), as we
expect.) As //¢#—0, this expression reduces to the one
quoted in [24] for narrow strips; in the opposite limit, we
find

~

In

1
Con

cm:c,g (et 1)-47;1112 (28)
which gives the correct parallel-plate value plus a smaller
fringing term.

Testing the accuracy of (27) is somewhat more difficult
because no strictly “exact” solution exists, and compari-
son must be made with numerical solutions of high ac-
curacy. Moreover, since two parameters (//¢ and ¢,) are
now involved, checking accuracy over all ranges is more
tedious. For the cases we tested, using ¢,2<10, the relative
error was smaller than that for the same value of //¢ but
with € =1. In fact, the accuracy of (27) and (20) will
increase with ¢,, because AG, falls off essentially as €2,
while G itself does so only as 1/¢,. Thus the errors in (6)
and (14) discussed in Section III will be upper bounds for
those of (20) and (27) if ¢,>> 1.

We should emphasize that the current and charge dis-
tributions (6) and (20) are the principal results of this
paper, and that (14) and (27) are intended as illustrative
applications of these results (another application is found
in [8]). The presence of the function Q(—§,) probably
precludes the use of small programmable calculators to
evaluate (27) at present, and Wheeler’s [20] analytical-
empirical formula (whose accuracy he estimates at 2 per-
cent) should be adequate for such purposes. In addition,
Wheeler’s formula is reversible and can be used either for
analysis or for synthesis. However, (27) is easily pro-
grammed on most ordinary computers and provides at
least twice the accuracy of Wheeler’s formula (if this is
required) without the wuse of more time-consuming
numerical procedures.

We might note in closing that the only other closed-
form variational results for C,, of which we are aware are
those of Vaynshteyn and Fialkovskii [25], [26]. These
authors, however, obtain accuracy comparable to that of
(27) only by using a function defined by a doubly infinite
summation which can be quite tedious to evaluate numeri-
cally.

V. CONCLUSION

It has been shown that charge and current distributions
on parallel-plate and microstrip transmission lines are
approximated quite well by expressions (6) and (20) over
the entire range of values of //¢ and .. Because of their
simplicity, these functions should be useful in many ap-
plications where an accurate knowledge of these distribu-
tions is required. In addition to dispersion calculations [8],
these might also include computing the mode fields of a
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parallel-plate transmission line, evaluating the radiation
from microstrip discontinuities, or computation of the
performance of stripline antennas. In this paper, they have
been used to obtain extremely accurate closed-form ex-
pressions for the capacitance of parallel-plate and micro-
strip transmission lines, with an accuracy of a fraction of
one percent. The primary usefulness of (6) and (20),
however, should be in applications where numerous
evaluations of charge and current density need to be
made (e.g., when these distributions appear inside an
integral), and considerable computer time is to be saved
by using these instead of numerically obtained values.
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Theory of Dispersion in Microstrip
of Arbitrary Width

EDWARD F. KUESTER, MEMBER, IEEE AND DAVID C. CHANG, SENIOR MEMBER, IEEE

Abstract—An analytic theory for the dispersion of the fundamental
mode on wide open microstrip is presented. Only a single basis function Is
needed to accurately represent each of the change and current distribu-
tions on the strip, thus allowing more efficient determination of the

propagation constant as compared to moment-method solutions requiring a
larger number of basis functions. The results obtained blend smoothly into
resuits of high-frequency (Wiener—Hopf) theories, and still retain the
appealing physical interpretation in terms of capitance and inductance of
the narrow strip theory previously obtained by the authors.

I. INTRODUCTION

n PREVIOUS work, the authors [1] have presented an

analytic theory of dispersion for narrow open micro-
strip (that is, for which the strip is small compared to
substrate thickness) in terms of a dispersive series induc-
tance and capitance, generalizing the classical expression
for the propagation constant from transmission line the-
ory which involves the static values of these parameters.
Because an accurate form for the current and charge
distributions (which are the same for this case) was availa-
ble, it was possible to avoid more cumbersome moment
function expansions, and to obtain a relatively simple
dispersion relation possessing the clear physical interpre-

Manuscript received June 11, 1979; revised October 17, 1979. This
project is supported in part by the Office of Naval Research under
Contract N0014-76-C-0318 and in part by NSF Grant ENG78-09029.

The authors are with Electromagnetics Laboratory, Department of
Electronical Engineering, University of Colorado, Boulder, CO 80309.

tation referred to above. In reviewing numerical results
available in the literature for wider microstrip, whose strip
width is comparable to substrate thickness, the authors
found significant discrepancies between workers who used
different methods to attack the problem [2]. The best
methods seem to be those which can represent the current
and charge distributions (especially the edge singularities)
accurately with a minimum number of basis functions.

The goal of the present study is to formulate an analytic
theory of dispersion similar to [1] which will be valid for
wider strips, yet still retain both analytical and computa-
tional straightforwardness as well as clear physical insight
into the problem. Crucial to this is the recognition that the
charge and current distributions now differ significantly
from those in the narrow-strip limit, and also differ to
some extent from each other. Thus an important part of
the discussion depends on having accurate and reasonably
simple functional descriptions of these distributions. The
results will be examined to see what degree the difference
of these distributions from the narrow-strip case and from
each other affects the accuracy of the computed disper-
sion curves.

Of published numerical work, references [3]-[5] offer
results that we might classify as applying to “wide” micro-
strip, and these will be used as the basis for comparison.
Also, although we shall consider strips wide compared to
the substrate, the strips are not allowed to become electri-
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